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Abstract. We use multi-time correlation functions of quantum systems to construct random
variables with statistical properties that reflect the degree of complexity of the underlying
quantum dynamics.

1. Introduction

In the field of quantum chaos, the structure of time-correlation functions is of the utmost
importance to study relaxation phenomena, to single out the existence of different timescales
and to perform the semiclassical analysis [1]. In this paper, we look at time averages of
multi-time correlation functions as expectations of particular random variables and suggest
that their statistical properties might reflect the degree of irregularity of the quantum
dynamics. In particular, on the level of the fluctuations of these random variables, a variety
of different statistics seems likely to emerge, among them the semicircle distribution typical
of random matrix theory, corresponding to different degrees of randomness.

2. Statistics of correlation functions

We shall in general be interested in the large-time behaviour of time correlation functions of
quantum dynamical systems. For sake of comparison and broader generality, such a matter
is better described in the more general setting of quantum and classical dynamical systems.

In quantum mechanics, one usually works with operatorsX on a Hilbert spaceH and
the Heisenberg evolution generated by some HamiltonianH

X 7→ X(t) := eiHtXe−iHt . (1)

Then, time-invariant expectationsX 7→ 〈X〉 := 〈ψ |X|ψ〉 are computed by means of a
suitable ‘reference state’H |ψ〉 = 0. In general, i.e. in the case of discrete quantum
dynamics, exp(iHt) is replaced by the powerUn of a unitary operatorU , with U |ψ〉 = |ψ〉.
Then, (1) brings about the time evolution up to an integer multiplet = T n of a unit of
time T .

In classical mechanics, one has a phase spaceX , a dynamical (Hamiltonian) flow
connecting phase points(q, p) through trajectories(qt , pt ) and a time-invariant, normalized
phase-density distributionρ, e.g. the canonical ensemble. It is, however, convenient to
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adopt an algebraic description based on the Koopman construction [2], using complex-
valued functionsf on X evolving in time according to

f (q, p) 7→ ft (q, p) := f (qt , pt ). (2)

Time-invariant expectations are obtained by averaging with respect toρ

〈f 〉 :=
∫
X

dq dp ρ(q, p)f (q, p). (3)

The analogy between classical and quantum systems can be pushed further by considering
the Hilbert space of square integrable functionsf on phase spaceX

〈f |f 〉 :=
∫
X

dq dp ρ(q, p)|f (q, p)|2 <∞. (4)

The classical observables act on this Hilbert space as multiplication operators:f |g(q, p)〉 :=
|f (q, p)g(q, p)〉 and we can compute the expectation in (3) as the average of such anf

with respect to the constant ‘wavefunction’ 1 onX : 〈f 〉 = 〈1|f |1〉.
In this way, classical and quantum systems can be treated on the same footing. Formally,

the only difference is the algebra considered: commutative in the first case, non-commutative
in the second. Nevertheless, this has quite profound consequences on the probabilistic
structure of the theory. In fact, one of the difficult problems for truly quantum systems
is to understand the implications of positivity, i.e.〈X†X〉 > 0, on the structure of the
expectations. Indeed, the algebraic formulation of both classical and quantum dynamical
systems indicates a possible way to extrapolate from the classical to the quantum context,
but, at the same time, puts into evidence the differences between the two. For instance, the
notion of mixing is expressed for both classical and quantum systems by the decorrelation
property

lim
t
〈XY(t)Z〉 = 〈XZ〉〈Y 〉. (5)

In classical dynamical systems,Z can be commuted overY (t) so that two observablesX
andY suffice. Also, any classical correlation function as〈XY(t)ZU(t)V S(t)〉, or the like,
where the timet appears more than once, can be reduced to the above form. Because
of a lack of commutativity this is not possible in quantum system, unless some form of
asymptotic commutativity in time holds as, for instance,

lim
t
〈[X, Y (t)]∗[X, Y (t)]〉 = 0. (6)

For infinite quantum systems, many properties can be deduced from (6) [3].
In most finite quantum systems, however, the (quasi-)energy spectrum is discrete and

neither mixing, nor does asymptotic commutativity hold. Typically, in classically chaotic
quantum systems, it is at this point that the notion of breaking-times appears [1]. We do not
want to address this interesting topic here, but we will stick to quantum systems which are
dynamically endowed with some degree of asymptotic clustering and show that different
statistics of quantum random variables naturally emerge.

In the hierarchy of quantum clustering behaviours, stronger than mixing is multi-
clustering [4]

lim
min |ta−tb|→∞

〈X(1)(ti1)X(2)(ti2) . . . X(n)(tin )〉 =
s∏
`=1

〈 −→∏
j∈J`

X(j)
〉

(7)

whereJ` is the subset{j1, j2, . . .} of {1, 2, . . . , n} such thattji = tjk , that is we allow the
same time to appear more than once, so that the number of different timess may be smaller
than the numbern of subindices. The shorthand notation min|ta − tb| → ∞ means that
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we let all differences between different times go to infinity and, finally, the arrow over the
product means that the factors inside, which do not in general commute, have to appear in
the same order as in the correlation function. It is not difficult to show that (7) is equivalent
to having both asymptotic commutativity (6) and mixing (5) [5].

However, rather than in a situation where (6) holds, we are interested in multi-time
correlation functions of the form

〈X(1)(ti1)X(2)(ti2) . . . X(n)(tin )〉 (8)

whereti1 6= ti2 6= · · · 6= tin , but, possibly,tij = tik when|j−k| > 1. Indeed, one might rightly
suspect that, precisely because of the possible irregularity of the dynamics, no asymptotic
commutativity is available to simplify multi-time correlation functions. In this case, given
several products (monomials) of observables at different times, some of them possibly equal,
one cannot help but keep the monomials as they are. The only sensible algebraic operation
left, apart from linear combinations and taking adjoints, is the concatenation of monomials
into larger ones.

Concretely, letX(1), X(2), . . . , X(n) ben observables from a suitable operator algebraA
at timet = 0. Because of the time evolution, in spite of possible algebraic relations between
X(k) andX(`) at t = 0, no simplifying commutation relations, e.g. commutativity, need to
hold betweenX(k)(tik ) andX(`)(ti` ) for large |tik − ti` |. In general, one will have to cope
with expectations of monomials of the formX(1)(ti1)X

(2)(ti2) . . . X
(n)(tin ), the observables

at time t = 0 having evolved up to a set of timesti1, ti2, . . . , tin , some of them possibly
equal, without much room for simplifications. Thus, the only sensible algebraic setting
is that provided by a ‘free product’ [6] of copies of the algebraA consisting of (linear
combinations of) monomialsX(1)i1 X

(2)
i2
. . . X

(n)
in

, the subindexi` locating the observableX(`)

within the i`th copy ofA, with the following rules.
(a) Whenever the identity appears it can be dropped.
(b) Whenever two consecutive observablesX(k)ik and X(k+1)

ik+1
carry equal subindices

(ik = ik+1), then they must be considered as the single observable(X(k)X(k+1))ik .
We stress that in the asymptotic free algebra, monomials are multiplied by concatenation

without any simplification rule between consecutive letters except for the previous requests
(a) and (b).

We shall call the algebra constructed above the ‘asymptotic free algebra’ and denote
it by A∞. Furthermore, we define an expectation functional〈·〉∞ on the monomials
X
(1)
i1
X
(2)
i2
. . . X

(n)
in

by computing consecutive multi-time averages of correlation functions
as in (8), namely

〈X(1)i1 X
(2)
i2
. . . X

(n)
in
〉∞ := lim

Ts
. . . lim

T1

1

T1 . . . Ts

Ts∑
ts=0

. . .

T0∑
t1=0

〈X(1)(ti1) . . . X(n)(tin )〉 (9)

in the case of discrete time dynamical systems, otherwise sums have to be replaced by
integrals. In the expression above, all time indicestj` ∈ {ti1, ti2, . . . , tin} such thatti` = tj
contribute to the single time average with respect totj . The indexs just counts the number
of different times that appear in the multi-time correlation function to be averaged as in (9).
These expectations return positive values when used to compute expectations of positive
operators and thus the left-hand side member of (9) allows for a consistent probabilistic
interpretation [5]. Notice that, according to the definition, given an observableX ∈ A,
〈Xi`〉∞ = 〈X〉, whatever the location in ai` copy ofA contributing to the asymptotic free
algebraA∞.
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As a first application, let us assume that multi-clustering (7) holds. Then, (9) can be
readily computed yielding

〈X(1)i1 X
(2)
i2
· · ·X(n)in 〉∞ =

k∏
`=1

〈 −→∏
j∈J`

X(j)
〉
∞
=

s∏
`=1

〈 −→∏
j∈J`

X(j)
〉
.

We present explicitly a few expectations choosing for notational simplicityX(1) = A,
X(2) = B and so on. Remember that the subscripts refer to the times with respect to which
the limits in (9) are computed, so that equal subscripts mean that equal times have been
considered:

〈A1〉∞ = 〈A〉
〈A1B2〉∞ = 〈A〉〈B〉
〈A1B2C1〉∞ = 〈AC〉〈B〉
〈A1B2C1D2〉∞ = 〈AC〉〈BD〉.

(10)

Notice that, because of (6), we could consistently impose that observables pertaining to
different copies ofA in the asymptotic free algebraA∞ commute, that is [Xk, Y`] = 0 for
k 6= `. Moreover, the type of clustering into expectations of smaller monomials in (10) is
an expression of statistical independence of observables well separated in time. This has
the important consequence that, according to the central limit theorem, whenN →∞, the
fluctuations 1/N

∑N
j=1 Ãj in the asymptotic free algebraA∞ of centred observablesA ∈ A

become Gaussian random variables [7].
A totally different notion of statistical independence for observables belonging to the

asymptotic free algebra, called ‘free independence’ or ‘freeness’, is defined by the following
decoupling scheme [6]

〈X(1)i1 X
(2)
i2
. . . X

(n)
in
〉∞ = 0 if 〈X(`)〉∞ = 〈X(`)〉 = 0 (11)

with ` = 1, . . . , n andi1 6= i2 6= . . . 6= in. As a comparison with (10), we write the first few
expectations under the assumption that they exhibit free independence. We letX(1) = A,
X(2) = B and so on and use (11) after writing, sayA, asA = 〈A〉1+ Ã whereÃ is now
centred. Then, we notice that, ifA ∈ A is centred for〈·〉, it is also centred for〈·〉∞ as an
observable of the asymptotic free algebraA ∈ A∞. Thus,

〈A1〉∞ = 〈A〉
〈A1B2〉∞ = 〈A〉〈B〉
〈A1B2C1〉∞ = 〈AC〉〈B〉
〈A1B2C1D2〉∞ = 〈AC〉〈B〉〈D〉 + 〈A〉〈BD〉〈C〉 − 〈A〉〈B〉〈C〉〈D〉.

(12)

It follows that the notion of free independence is incompatible with the usual statistical
independence:〈A1B2A

∗
1B
∗
2〉∞ = 〈AA∗〉〈BB∗〉 in the usual case, while〈A1B2A

∗
1B
∗
2〉∞ = 0

in the ‘free’ case,A andB being centred observables. As a consequence, the fluctuations
of centred observables are no longer Gaussian random variables, but semicircularly
distributed [6].

3. Examples

We consider a class of dynamical systems described by operatorse(t) at discrete times
t ∈ Z, e(t) being a unitary operatore = e†, e2 = 1, specified at timet = 0 and evolved
up to time t according to an underlying quantum evolution. Since we are only interested
in the essential features of the time evolution, like regularity or randomness, we do not



Statistics and quantum chaos 9127

take into account its detailed structure, but rather resort to a schematic description. We
shall assume that the dynamics may be described by a so-called ‘bit-stream’ [8–10], that is
by a sequencea(1), a(2), . . . of zeros and ones fixing the commutation relations between
operators at different timess, t = 1, 2, . . .

e(s + t)e(s) = (−1)a(t)e(s)e(s + t). (13)

Obviously, these commutation relations strongly depend on the statistical properties of the
bit-stream.

The algebraA of observables of the system consists of linear combinations of monomials
w(t) of operatorse(t) of the form

w(t) := e(ti1)e(ti2) . . . e(tin ) t = (ti1, ti2, . . . , tin ). (14)

By using the commutation relation (13) and the fact thate(t)2 = 1, we may always assume
that t is an ordered multi-index, i.e.ti1 < ti2 < · · · < tin . The probabilities of selfadjoint
monomialsw(t) are specified by the expectations〈w(t)〉 with respect to a given state〈·〉.

If there are no preferred observables to single out apart from the identity, a meaningful
statistic arises from

〈w(t)〉 = 0 〈1〉 = 1. (15)

The dynamics during a single timestep is given by the shift on the indices of the operators
e(t):

w(t) 7→ w(t+ 1) := e(ti1 + 1)e(ti2 + 1) . . . e(tin + 1). (16)

In spite of the extreme simplicity, the variety of statistics brought about by the expectations
in (15) together with the bit-streams is nevertheless noticeable [5]. Notice that〈w(t)〉 can
appropriately be called a multi-time correlation function for the dynamics given in (16).

3.1. Free shift

We shall now consider the so-called ‘free shift’. In its most basic form it is a quantum shift,
but without any algebraic relations as in (13), so that the only possible simplification in
products of observables comes frome2 = 1. It is rather obvious that system observables do
not commute, even when largely separated in time. The statistics of correlation functions
is now described by ‘free independence’, that is by (11). In order to prove the assertion,
we observe that, because of (15), general centred observablesÃ, i.e. 〈Ã〉 = 0, are obtained
by linear combinations of monomials. Since we want to compute expectations of the form
〈w(1)i1 w

(2)
i2
. . . w

(n)
in
〉∞, whereij 6= ij+1 for all j = {1, 2, . . . , n}, we consider time limits

lim
min |ta−tb |→∞

〈w(1)(ti1)w(2)(ti2) . . . w(n)(tin )〉 (17)

where thew(j) are centred monomials as in (14) andw(j)(tij ) are the evolved ones up
to times tij according to (16) andtij 6= tij+1. It is then clear that, for sufficiently large
differences between any two consecutive times, there cannot be simplifications due to the
rule e(t)2 = 1. Therefore, because of (15), expectations of products of observables as
in (17) will vanish in the limit, whence〈w(1)i1 w

(2)
i2
. . . w

(n)
in
〉∞ = 0.
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3.2. Regular and irregular quantum shifts

Quantum shifts governed by generic bit-streams present intermediate situations interpolating
between the case of asymptotic commutativity and the total absence of algebraic relations
between observables largely separated in time. In fact, one easily calculates

〈[e(t), e(s)]∗[e(t), e(s)]〉 = (1− (−1)a(|t−s|))2

so that, unless the bit-stream is regular and limt a(t) = 0 or 1, there are no definite
commutation relations among operators largely separated in time. Ifa(t) is eventually
vanishing, then the quantum shift is asymptotically Abelian and we expect the usual
statistical independence for the (random variables) observables ofA∞. If a(t) tends to 1,
we obtain Fermionic independence. Otherwise, the observables ofA do not asymptotically
commute and in connection with the degree of irregularity of the bit-stream, one expects
typical statistics to be exhibited inA∞. Yet, no irregularity is enough to enforce free
independence. In fact, let us consider the simple observablew = e ∈ A and monomials
constructed with alternating products ofe(t1) ande(t2), t1 6= t2. The first, possibly non-zero,
expectation of such monomials is

〈e(t1)e(t2)e(t1)e(t2)〉 = (−1)a(|t2−t1|).

Since 〈ei〉∞ = 〈e〉 = 0 for all i, freeness demands〈e1e2e1e2〉∞ = 0. By choosing a
sufficiently irregular bit-stream, e.g. a typical path of an unbiased Bernoulli process, we can
enforce

〈e1e2e1e2〉∞ = lim
T1,T2→∞

1

T1T2

T1∑
t1=0

T2∑
t2=0

(−1)a(|t2−t1|) = 0. (18)

Nevertheless, using (13) one easily deduces

〈e(t1)e(t2)e(t1)e(t2)e(t1)e(t2)e(t1)e(t2)〉 = 1

whence〈e1e2e1e2e1e2e1e2〉∞ = 1, whereas freeness would amount to the vanishing of that
expectation, too.

Notice that〈(e1e2)
4〉∞ is the first expectation of alternating products not to vanish. By

reducing the degree of irregularity of the bit-stream, one may make〈(e1e2)
2〉∞ 6= 0 in (18).

This should be compared with (10) and (12) fixingC = A, D = B with A andB centred
observables. Of course, the full statistics needs the study of higher moments. However,
one may already guess the connection between the irregularity of the quantum dynamics
and the clustering of expectations of higher monomials: the more the randomness the less
the contributions.

3.3. Quantum Koopmanism

As a somewhat different model, we consider a classical flow(q, p) 7→ (qt , pt ) with mixing
properties on phase space, namely

lim
t→∞〈f |gt 〉 = lim

t→∞

∫
X

dq dp ρ(q, p)f (q, p)g(qt , pt ) = 〈f 〉〈g〉

where the Koopman Hilbert space description (4) for classical systems has been used.
We now proceed to a ‘non-canonical’ quantization whereby the quantum evolution of
‘wavefunctions’ is exactly the classical one [11]. Given functionsf , g in the Koopman
Hilbert space, operators of the form|f 〉〈g| may be used to construct the non-commutative
algebra of all finite rank operators. Expectations of observables|f 〉〈f | are given by



Statistics and quantum chaos 9129

〈|f 〉〈f |〉 = |〈1|f |1〉|2. Finally, the dynamics shifts|f 〉〈f | into |ft 〉〈ft | with ft as in (2).
One can then deduce that

lim
t→∞〈R(f )R(gt )〉 = 〈R(f )〉〈R(g)〉

whereR(f ) := |f 〉〈f |. The above product structure extends to the set of finite rank matrices
A,B, . . . , F and multi-clustering as in (7) holds, namely

lim
min |ta−tb|→∞

〈1|A(ti1)B(ti2) . . . F (tin )|1〉 = 〈A〉〈B〉 . . . 〈F 〉.
In contrast to (7), there is no clustering of operators carrying the same time-index.

The above limits can be used to construct the asymptotic state〈·〉∞ on the asymptotic
free algebraA∞. Explicitly

〈A1B2 . . . Fn〉∞ = 〈A〉〈B〉 . . . 〈F 〉.
Notice that the identity operator1 is not a finite rank matrix and, in order to construct
centred observables̃A := A − 〈A〉1, one has to add it to the finite rank operators. Such
a dynamical system is neither commutative, nor asymptotically commutative and therefore,
the usual statistical independence (7) and thus a Gaussian distribution of fluctuations is not
expected to hold. Freeness does not show up either as a property of the asymptotic free
algebra. Indeed, considering centred observablesÃ, B̃, C̃ andD̃, one can prove that

〈Ã1〉∞ = 0

〈Ã1B̃2〉∞ = 0

〈Ã1B̃2C̃1〉∞ = 〈A〉〈B〉〈C〉 − 〈B〉〈AC〉
〈Ã1B̃2C̃1D̃2〉∞ = 0.

(19)

Unlike in (10) and (12) when we use centred observables, in (19) the first non-vanishing
moment is already the third one, which somehow indicates that, despite the mixing property
of the underlying classical dynamics which is carried over to an exotic quantum dynamics,
the statistics on the asymptotic free algebra does not come nearer to the irregular quantum
shifts discussed above. Interestingly, the previous way of extending a property of the
classical time evolution, in this case phase space mixing, to a ‘quantum’ system was
proposed in [11] to provide a counterexample to the claimed incompatibility between chaos
and quantum mechanics. Subsequently, a physical application of these ideas was given
in [12].

4. Conclusions

Usual statistical independence is a workable property in the context of infinitely extended
dynamical systems appearing in statistical mechanics where a more or less strong degree
of asymptotic commutativity is expected. However, when no asymptotic commutativity is
available, the knowledge that multi-time correlation functions, with strictly ordered times
such as in (7), cluster, is not sufficient to draw any conclusion about correlation functions
where equal times appear as in (8). From the above examples, we learn that increasing
random behaviours bring us closer to freeness in the sense that more and more asymptotic
expectations vanish. This is particularly evident for quantum shifts, where regular bit-
streams would make a lot of multi-time averages return non-zero values. On the other hand,
free independence requires that all expectations of monomials of centred observables in the
asymptotic free algebra vanish. This amounts to a total lack of any algebraic structure
between observables at different times which is difficult to implement by means of any
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irregular bit-stream. However, freeness seems more likely on the level of the fluctuations
in the asymptotic free algebra of sufficiently random quantum systems [5].

Acknowledgments

We warmly thank A Verbeure for many illuminating suggestions and comments. FB
acknowledges financial support from the Onderzoeksfonds KU Leuven F/97/60 and the
Italian INFN.

References

[1] Casati G and Chirikov B 1995Quantum Chaos(Cambridge: Cambridge University Press)
[2] Reed M and Simon B 1972Methods of Modern Mathematical Physics, I: Functional Analysis(New York:

Academic)
[3] Thirring W 1983A Course in Mathematical Physics, IV: Quantum Mechanics of Large Systems(New York:

Springer)
[4] Thirring W and Narnhofer H 1994Lett. Math. Phys.30 307
[5] Andries J, Benatti F, De Cock M and Fannes M in preparation
[6] Voiculescu D V, Dykema K J and Nica A 1991Free Random Variables(Providence, RI: American

Mathematical Society)
[7] Goderis D, Verbeure A and Vets P 1989Prob. Theor. Relat. Fields82 527
[8] Price G L 1987Can. J. Math.39 492
[9] Powers R T 1988Can. J. Math.40 86

[10] Størmer E 1992Inv. Math.110 63
[11] Berry M 1990 True quantum chaos? An instructive exampleProc. Yukawa Symp. (Tokyo)
[12] Pasmanter R A 1990Phys. Rev.A 42 3622


